Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203754

RESUMO

Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.


Assuntos
Linfócitos B Reguladores , Dermatite Atópica , Psoríase , Humanos , Pele , Cicatrização
2.
Front Immunol ; 14: 1178445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731503

RESUMO

Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.


Assuntos
Linfócitos B Reguladores , Ligante de CD40 , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Terapia de Imunossupressão , Fenótipo
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762093

RESUMO

Single-nucleotide polymorphism rs71327024 located in the human 3p21.31 locus has been associated with an elevated risk of hospitalization upon SARS-CoV-2 infection. The 3p21.31 locus contains several genes encoding chemokine receptors potentially relevant to severe COVID-19. In particular, CXCR6, which is prominently expressed in T lymphocytes, NK, and NKT cells, has been shown to be involved in the recruitment of immune cells to non-lymphoid organs in chronic inflammatory and respiratory diseases. In COVID-19, CXCR6 expression is reduced in lung resident memory T cells from patients with severe disease as compared to the control cohort with moderate symptoms. We demonstrate here that rs71327024 is located within an active enhancer that augments the activity of the CXCR6 promoter in human CD4+ T lymphocytes. The common rs71327024(G) variant makes a functional binding site for the c-Myb transcription factor, while the risk rs71327024(T) variant disrupts c-Myb binding and reduces the enhancer activity. Concordantly, c-Myb knockdown in PMA-treated Jurkat cells negates rs71327024's allele-specific effect on CXCR6 promoter activity. We conclude that a disrupted c-Myb binding site may decrease CXCR6 expression in T helper cells of individuals carrying the minor rs71327024(T) allele and thus may promote the progression of severe COVID-19 and other inflammatory pathologies.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Hospitalização , Regiões Promotoras Genéticas , Receptores CXCR6/genética , SARS-CoV-2 , Linfócitos T Auxiliares-Indutores
4.
Biochemistry (Mosc) ; 88(2): 280-288, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37072333

RESUMO

Diseases associated with the disorders of carbohydrate and lipid metabolism are widespread in the modern world. Interaction between the cells of adipose tissue - adipocytes - and immune system cells is an essential factor in pathogenesis of such diseases. Long-term increase in the glucose and fatty acid levels leads to adipocyte hypertrophy and increased expression of pro-inflammatory cytokines and adipokines by these cells. As a result, immune cells acquire a pro-inflammatory phenotype, and new leukocytes are recruited. Inflammation of adipose tissue leads to insulin resistance and stimulates formation of atherosclerotic plaques and development of autoimmunity. New studies show that different groups of B lymphocytes play an essential role in regulation of adipose tissue inflammation. Decrease in the number of B-2 lymphocytes suppresses development of a number of metabolic diseases, whereas decreased numbers of the regulatory B lymphocytes and B-1 lymphocytes are associated with more severe pathology. Recent studies showed that adipocytes influence B lymphocyte activity both directly and by altering activity of other immune cells. These findings provide better understanding of the molecular mechanisms of human pathologies associated with impaired carbohydrate and lipid metabolism, such as type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Doenças Metabólicas/patologia , Glucose/metabolismo , Inflamação/metabolismo , Linfócitos B/metabolismo
5.
Biochemistry (Mosc) ; 88(1): 13-21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068869

RESUMO

B lymphocytes play an important role in the regulation of immune response in both normal and pathological conditions. Traditionally, the main functions of B cells were considered to be antibody production and antigen presentation, but in recent decades there have been discovered several subpopulations of regulatory B lymphocytes (Bregs), which maintain immunological tolerance and prevent overactivation of the immune system. Memory (mBregs, CD19+CD24hiCD27+) and transitional (tBregs, CD19+CD24hiCD38hi) subpopulations of Bregs are usually considered in the context of studying the role of these B cells in various human pathologies. However, the mechanisms by which these Breg subpopulations exert their immunosuppressive activity remain poorly understood. In this work, we used bioinformatic analysis of open-source RNA sequencing data to propose potential mechanisms of B cell-mediated immunosuppression. Analysis of differential gene expression before and after activation of these subpopulations allowed us to identify six candidate molecules that may determine the functionality of mBregs and tBregs. IL4I1-, SIRPA-, and SLAMF7-dependent mechanisms of immunosuppression may be characteristic of both Breg subsets, while NID1-, CST7-, and ADORA2B-dependent mechanisms may be predominantly characteristic of tBregs. In-depth understanding of the molecular mechanisms of anti-inflammatory immune response of B lymphocytes is an important task for both basic science and applied medicine and could facilitate the development of new approaches to the therapy of complex diseases.


Assuntos
Linfócitos B Reguladores , Humanos , Linfócitos B Reguladores/metabolismo , Linfócitos B Reguladores/patologia , Tolerância Imunológica , Imunossupressores/metabolismo , Terapia de Imunossupressão , L-Aminoácido Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...